OpenCV
2019-10-14
在python环境下使用opencv:
pip install opencv-python
物体检测
void detectMultiScale(
const Mat& image, //待检测图像
CV_OUT vector<Rect>& objects, //被检测物体的矩形框向量
double scaleFactor = 1.1, //前后两次相继的扫描中搜索窗口的比例系数,默认为1.1 即每次搜索窗口扩大10%
int minNeighbors = 3, //构成检测目标的相邻矩形的最小个数 如果组成检测目标的小矩形的个数和小于minneighbors - 1 都会被排除
//如果minneighbors为0 则函数不做任何操作就返回所有被检候选矩形框
int flags = 0, //若设置为CV_HAAR_DO_CANNY_PRUNING 函数将会使用Canny边缘检测来排除边缘过多或过少的区域
Size minSize = Size(),
Size maxSize = Size() //最后两个参数用来限制得到的目标区域的范围
);
对于flags,有以下取值:
CV_HAAR_DO_CANNY_PRUNING:利用Canny边缘检测器来排除一些边缘很少或者很多的图像区域;
CV_HAAR_SCALE_IMAGE:按比例正常检测;
CV_HAAR_FIND_BIGGEST_OBJECT:只检测最大的物体;
CV_HAAR_DO_ROUGH_SEARCH:只做初略检测。
摄像头实时灰度处理
import cv2
vc = cv2.VideoCapture(0)
if vc.isOpened():
open, frame = vc.read()
else:
open = False
while open:
ret, frame = vc.read()
if frame is None:
break
if ret == True:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('result',gray)
if cv2.waitKey(10) & 0xFF == 27:
break
vc.release()
cv2.destroyAllWindows()
人眼检测
代码
### 人眼检测
import cv2
# 创建级联分类器
classifier_eye = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_eye.xml')
# 载入图像
img_eye = cv2.imread('a.jpg')
h,w = img_eye.shape[:2]
print(h,w)
# 利用分类器进行检测
eyeRects = classifier_eye.detectMultiScale(img_eye, 1.2, 2, cv2.CASCADE_DO_CANNY_PRUNING, (w//20, w//20))
# 检测结果
if len(eyeRects) > 0:
for eyeRect in eyeRects:
x, y, w, h = eyeRect
cv2.rectangle(img_eye, (int(x), int(y)), (int(x + w), int(y + h)), (0, 255, 255), 2, 8)
cv2.imshow('eye', img_eye)
cv2.waitKey()
车牌检测
安装hyperlpr库
pip install hyperlpr
代码:
#导入包
from hyperlpr import *
#导入OpenCV库
import cv2
#读入图片
image = cv2.imread("car1.jpg")
#识别结果
res = HyperLPR_PlateRecogntion(image)
print(res[0][0])
目标追踪
安装依赖库opencv-contrib-python
pip install --user opencv-contrib-python
代码:
# 目标追踪
import cv2
import sys
print(cv2.__version__)
if __name__ == '__main__' :
# Set up tracker.
# Instead of MIL, you can also use
tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
tracker_type = tracker_types[2]
if tracker_type == 'BOOSTING':
tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
tracker = cv2.TrackerGOTURN_create()
# Read video
video = cv2.VideoCapture(0)
# Exit if video not opened.
if not video.isOpened():
print("Could not open video")
sys.exit()
# Read first frame.
ok, frame = video.read()
if not ok:
print('Cannot read video file')
sys.exit()
# Define an initial bounding box
#bbox = (287, 23, 86, 320)
# Uncomment the line below to select a different bounding box
bbox = cv2.selectROI(frame, False)
# Initialize tracker with first frame and bounding box
ok = tracker.init(frame, bbox)
while True:
# Read a new frame
ok, frame = video.read()
if not ok:
break
# Start timer
timer = cv2.getTickCount()
# Update tracker
ok, bbox = tracker.update(frame)
# Calculate Frames per second (FPS)
fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
# Draw bounding box
if ok:
# Tracking success
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
else :
# Tracking failure
cv2.putText(frame, "Tracking failure detected", (100,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)
# Display tracker type on frame
cv2.putText(frame, tracker_type + " Tracker", (100,20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50),2);
# Display FPS on frame
cv2.putText(frame, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50), 2);
# Display result
cv2.imshow("Tracking", frame)
# Exit if ESC pressed
k = cv2.waitKey(1) & 0xff
if k == 27 : break